The Keystone XL Pipeline by Eric

“Isn’t the Keystone XL a huge pipeline they’re building through America?!”

The Keystone XL pipeline is not a brand new, ginormous pipeline being built from Canada to Texas.  In fact, the Keystone Pipeline already exists.  Commissioned in 2010 and built by the company TransCanada, the pipeline has been transporting oil from Canada to the U.S. for several years now.  Originally, the Keystone stretched from Alberta, Canada to Steele City, Kansas, and then to a refinery in Wood River, Illinois, and an oil tank farm in Patoka, Illinois.  In 2011, an extension was built from Steele City, to Cushing, Oklahoma, the site of a large oil tank farm.  For those who are unaware, oil tank farms are storage and distribution facilities for oil.  Cushing, Oklahoma happens to have the largest in the country, representing 12.5% of the country’s stock-up (for those who wish to learn more about Cushing’s grip on America’s oil, check out NewsOk.com).  After the addition of the Steele City to Cushing extension, an additional 485 miles was added in 2014 from Cushing to refineries in Port Arthur, Texas.  Work on a pipeline from Port Arthur to Houston, Texas is set to be completed by 2016.

“So what’s the difference between the Keystone XL and the Keystone?

The Keystone XL is another pipeline running from Alberta to Steele City, designed to increase barrel production from 700,000 barrels per day, to up to 830,000 barrels per day, a 16% increase.   For a more visual representation of the Keystone and Keystone XL, check out this map from The Washington Post:

keystone map

As you can see, the Keystone XL almost looks like a “shortcut” in a huge pipeline.  The only reason it has not been built yet is because it crosses the Canadian/U.S. border, and because this is an international border, it requires a special presidential permit.  Obama has been hesitant to give permission to TransCanada to build the Keystone XL for political reasons.  Many democrats oppose the plan because the left’s constituencies tend to be more environmentally focused, and therefore they need to vote against what many people see as being a detriment to the environment.  There have also been legal battles with landowners, especially in Texas, as eminent domain has been used to obtain access to their land.  One of the most notable cases, a restraining order filed by Texas farmer Julia Trigg Crawford, officially ended in March of 2014 when the Texas Supreme Court denied to hear her case.  Another issue that has delayed the president’s response came from Nebraska.  Nebraskans wanted to prevent the Keystone XL’s pathway through their state, however in 2013 Nebraska Governor Dave Heinman approved a different path through Nebraska that ended this issue.  All in all, most of the opposition comes in on the environmental front.

“So how does this affect the environment exactly?”

A significant portion of the opposition to the Keystone XL Pipeline is because of the environmental concerns.  Several groups, such as the National Defense Resources Council and the Friends of the Earth, place most of their worry in the environmental detriments of oil-sands, or tar-sands, the type of oil that is being taken from Alberta.  Oil-sands are not actually made of tar, they are made of a mixture of sand, water, and bitumen.  Only recently have they been thought of as usable oil, because oil-sands are an unconventional type of petroleum, meaning that they are produced using methods other than the conventional well-method.  Here’s a quick video from the Canadian Association of Petroleum Producers explaining oil-sands and bitumen:

There are several reasons why oil-sands negatively impacts the environment, one being greenhouse gas emissions.  A study from Stanford University found that the oil produced from oil-sands are 22% more carbon intensive than conventional oils in the U.S. in wells-to-wheels.  Wells-to-wheels measures the emission of carbon dioxide from the beginning of oil production, all the way through combustion in automobiles.  What this basically means is that the fuel you get from oil-sands causes 22% more pollution than conventional oil.  This number is heavily debated however, as some sources such as the Canadian Association for Petroleum Producers, the sources for the previous videos, says that oil-sands are only 9% more intensive than the U.S. average supply. According to activist organization Greenpeace, oil-sands account for 40 million tons of carbon dioxide emissions per year, which makes them the largest contributing factor to emission growth in Canada.  The majority of these emissions come from extracting the oil from the ground.  There are two main ways to do this, through open pit mining, and through in situ drilling.  Mining recovers the oil-sands that are close to the surface, accounting for about 20% of oil-sand extraction processes.  This process is closely related to coal-mining operations; chunks of earth containing oil-sands are put onto truck that take the chunks to crushers to break down the earth, then water is used to thin out the thick mixture, then the mixture is transported to a plant where the bitumen is separated from the other products and turned into usable fuel.  Here is another video explaining the process from the Canadian Association of Petroleum Producers:

https://youtu.be/Rbfxtey9S0c

In situ drilling gets to oil-sands that are deep under the ground, using a steam technology called steam-assisted gravity drainage.  Steam is pumped underground to liquefy the viscous bitumen, and then pumped back up.  These drilling sites are able to “directional drill”, meaning multiple wells can be created from a single site.  Here’s a quick video, again from the Canadian Association of Petroleum Producers:

https://youtu.be/GLdPNFh-wJc?list=UUAVWhrXORq3UGVya5abvRlQ

Both of these processes emit huge amounts of carbon dioxide, as they require far more energy than using wells for conventional oil.  Yet, there are still more environmental detriments caused by oil-sands.  The process of separating bitumen from the unnecessary products like clay and sand uses large quantities of water, in fact, three barrels of water are used for extraction for every one barrel of oil produced.  As one can imagine, this water becomes extremely polluted.  95% of this water, or 2.4 million barrels per day, becomes so polluted that it must be stored in tailing ponds (http://www.foe.org/projects/climate-and-energy/tar-sands/keystone-xl-pipeline).  If 2.4 million barrels doesn’t mean much to you, imagine over 100 million gallon jugs of water becoming too polluted to use every day.  These ponds are basically just pools of toxins, and there is the potential for some of these toxins to leak in to nearby water supplies.

Another more local concern regards the Alberta boreal forests.  Home to the largest land ecosystem on earth, they are incredibly important to many species.  However, they lay right on top of the oil-sand deposits.  Mining and in situ drilling sites require the clearing out of trees, and in situ drilling’s horizontal drilling can go under forests and disturb them greatly.  Some of these environmental effects seem to not rattle people though.  People have been hearing about greenhouse gasses for decades, and toxic water and forests up in Canada don’t affect American citizens.  But what does scare most Americans, are the spills.

Since it has been in operation in 2010, the Keystone Pipeline has had 14 spills, and has the possibility to spill 2.8 million gallons of bitumen in just a 1.7 mile area, according to the State Department.  That means that over 2.5 thousand gallons of extremely toxic sludge will pour out into every acre for over 1000 acres. Depending on the location of the spill, this could have a major impact on the U.S., as the proposed Keystone XL will pass through the Missouri River, Yellowstone, Red Rivers, and the Ogallala Aquifer.  For those who are not aware, the Ogallala Aquifer provides water to over one fourth of America’ irrigated land, and is responsible for two million citizen’s drinking water, according to Friends of the Earth.  Here’s a quick map of how much area is covered by the Ogallala Aquifer from the Water Encyclopedia, and check out their website for any more information:

The Ogallala Aquifer (shaded area) is in a state of overdraft owing to the current rate of water use. If withdrawals continue unabated, the aquifer could be depleted in only a few decades.

Clearly the Keystone XL has its issues, ranging from legal battles to sincere environmental concerns.  But with all these negative aspects…

“Will the Keystone XL even be helpful?”

There is the potential for job creation.  According to TransCanada, they see 20,000 jobs being created.  However, Obama released a statement in 2013 saying:               The most realistic estimates are this might create maybe 2,000 jobs                           during the construction of the pipeline, which might take a year or two,                   and then after that we’re talking about somewhere between 50 and 100                   jobs in an economy of 150 million working people.”

If TransCanada is correct in their assumption that the  Keystone XL will provide 20,000 jobs, that would be a .0001% increase in employment.  So compared to the entire U.S. economy, even using the most optimistic numbers, the jobs gain is not significantly large.  So let’s see how much energy the Keystone XL Pipeline would actually provide…

Well, according to the State Department’s report, the Keystone XL won’t really affect oil-sand production.  There are alternatives to the Keystone XL Pipeline, such as using combinations of tankers, rail-lines, and existing pipelines, that will all fulfill the same oil transportation amounts as the Keystone XL will, an additional 130,000 barrels per day.  Additionally, the alternatives are less prone to pipeline spills, so may actually be better from an environmental stand point.  In the report, the State Department also concludes that if the Pipeline is not approved, then an alternative will be used, and there will be no way of stopping it.  So either way, it looks like oil-sands are going to increase in production.  What are environmentalists supposed to do with this?  It seems like a lose-lose situation for them.  However, one way they may be able to win the battle is through economic reasoning.  Let’s take a look at this graph from Rystad Energy:

First, we’ll figure out what all these numbers mean.  On the left (the y-axis), we have U.S. dollars per barrel being measured.  A barrel is a barrel of crude oil, which contains 42 gallons of oil.  On the bottom (x-axis), total oil production in millions of barrel of oil equivalents per day is being measured.  Barrel of oil equivalent (boe) is just the amount of energy that can come from one barrel of oil, which is 1,700 kWh.  Boe per day (boe/d), is simply just the amount of barrels per day being produced.  So, as we take a look at the graph, we can see that oil-sands account for less than 5% of the world’s boe/d, almost the lowest amount compared to the rest of the sources.  Not only is it a tiny amount, but oil-sands are also the most expensive source of crude oil, coming in at an average of $88 per barrel, the next highest being North American shale (fracking), at $62.  Oil-sands may just not make economic sense, unless a new production technique can be devised to make it cheaper.  Some may argue in favor of oil-sands because we can get them from Canada, a much more stable source than the Middle East, but fracking in the United States account for more than double the oil production of oil-sands, and at a 30% cheaper price.

So overall, the Keystone XL is kind of a moot point.  The oil-sands will be produced either way, and the environmental concerns will still be there.  What America should focus on is moving away from oil-sands completely.  If we shift the argument against the Keystone XL to oil-sands in general, environmentalists may be able to win.  Most people will not be in favor of using the dirtiest oil around if they found out it was the most expensive oil as well.  Conservatives who are anti- climate change do not care about the environment, so if the environmentalists and people who oppose the use of oil-sands show them the concrete evidence that oil-sands production is a poor economic choice, then we may be able to win in stopping the Keystone XL, and the production of oil-sands all together.


Posted

in

by

Tags:

Comments

3 responses to “The Keystone XL Pipeline by Eric”

  1. Zoe Davidson Avatar
    Zoe Davidson

    I really liked your method for organizing the material! It made it conversational and easy to read.

    A few suggestions:

    Make sure you go back and proofread, I saw a few minor spelling/grammar mistakes.

    One thing that did confuse me is that you said a few times that “the keystone xl does not matter.” I’m not entirely sure what you mean by that so maybe try to clarify.

    I would love to learn more about the politics of the issue. you talked about it a little, but didn’t go into great depth.

    I also like the ideas you are bringing into the conclusion, but again, maybe go back and clean up the syntax a little bit.

    Overall, seemed very good to me! The scientific information was relevant and the multimedia sources were extremely helpful. I learned a lot about a topic that was brand new to me.

  2. deepaki Avatar
    deepaki

    Very good job with the draft here. Here are a few suggestions/comments:

    1. The economic point of view is interesting. A few more details on that would be great
    2. Some of the sources can be footnoted
    3. It’ll help to put some of the numbers in perspective – using simple examples for comparison.
    4. Go through the post carefully and see if you can make any claims tighter by providing quantitative information and comparisons.

  3. sso002 Avatar
    sso002

    You have good use of scientific numbers in your post and you execute them in a clear manner that is understandable to readers. A suggestion to make your post even more organized would be to put headers for each type of oil extraction or each new view to the Environmental argument. Separating the text into these sections help the reader visualize each side of the argument. Perhaps having a section at the end to drive your message home would be helpful so that readers are clear on what side you stand on.

Leave a Reply